HURLSTONE AGRICULTURAL HIGH SCHOOL

MATHEMATICS EXTENSION 1

2013

HSC

Assessment Task 2

Examiners: P. Biczo, J. Dillon, S. Faulds, S. Gutesa, G. Huxley, B. Morrison

General Instructions

- Reading time 5 minutes.
- Working time 90 minutes.
- Attempt all questions.
- Board approved calculators and Math Aids may be used.
- This examination must **NOT** be removed from the examination room
- Section A consists of five (5) multiple choice questions worth 1 mark each. Fill in your answer on the multiple choice answer sheet provided.
- Section B requires all necessary working to be shown in every question. This section consists of five (5) questions worth 9 marks each. Marks may not be awarded for careless or badly arranged work.

 Each question is to be started in a new

Each question is to be started in a new answer booklet. Additional booklets are available if required.

Name: 24397548

Class: (2A3

This page has been left blank.

SECTION A - 5 multiple choice questions (1 mark each)

Answer on the sheet provided. This sheet may be torn off the back.

Question 1

Given α , β and γ are the roots of the equation $2x^3 + 5x^2 - x - 3 = 0$, then the value of $\alpha\beta + \alpha\gamma + \beta\gamma$ is

- **B.** $-\frac{1}{2}$ **C.** $\frac{1}{2}$

Question 2

The area between the x-axis and the curve y = x(x-2)(x-3)bounded by the straight lines x = 0 and x = 3 is best determined by:

A.
$$\int_{0}^{3} x(x-2)(x-3)dx$$

A.
$$\int_{0}^{3} x(x-2)(x-3)dx$$
B.
$$\int_{0}^{2} x(x-2)(x-3)dx + \int_{2}^{3} x(x-2)(x-3)dx$$

C.
$$\int_{0}^{2} x(x-2)(x-3)dx + \left| \int_{2}^{3} x(x-2)(x-3)dx \right|$$

$$\mathbf{D.} \qquad \left| \int_{0}^{3} x(x-2)(x-3) dx \right|$$

Question 3

How many distinct permutations of the letters of the word 'ATTAINS' are possible in a straight line when the word begins and ends with the letter T?

- A. 60
- B. 120
- C. 360
- D. 1260

Question 4

What is the exact value of tan 75°?

- $2 \sqrt{3}$ A.
- В.
- $4-\sqrt{3}$ C. $2+\sqrt{3}$
- **D.** $4+\sqrt{3}$

Question 5

A and **B** are the points (-3, 2) and (5, 7) respectively. The point $P(-1, 3\frac{1}{4})$ divides the interval **AB**:

- A. Internally in the ratio 1:3
- **B.** Externally in the ratio 2:1
- C Externally in the ratio 1:2
- **D.** Internally in the ratio 3:1

SECTION B

Question 6 (9 marks) Use a SEPARATE writing booklet

Marks

2

(a) Prove by mathematical induction:

$$\sum_{r=1}^{n} r.r! = (n+1)! - 1$$

- (b) (i) Find the x-value of the point where the curves $y = 5 x^2$ and $y = (x 1)^2$ intersect in the first quadrant.
 - (ii) Hence, find the acute angle between the two curves at their point of intersection in the first quadrant to the nearest degree
- (c) Solve the inequality:
- $\frac{x^2 5x}{x 4} \le 3$

Question 7 (9 marks) Use a SEPARATE writing booklet

Marks

(a) Show that
$$\frac{1+\cos 2\theta}{\sin 2\theta} = \cot \theta$$

(b) Mr Gee has five different textbooks on his desk:
One for Extension 2, one for Extension 1, one for Mathematics, one for Year 8 and one for Year 7

During breaks between lessons he stacks two, three, four or five textbooks on top of one another to form a vertical tower.

- (i) How many different towers can be formed, that are three textbooks high? 1
- (ii) How many different towers can he form in total?
- (c) Five players are selected at random from three sporting teams A, B and C. Each team consists of seven players numbered 1 to 7.
 - (i) Two brothers play for different teams. What is the probability that of the five selected players, both brothers are selected?
 - (ii) Jason wanted to find the number of ways to select five players so that no team misses out in the selection.

His answer was

$${}^{3}C_{1}{}^{7}C_{1}{}^{7}C_{1}{}^{7}C_{3} + {}^{3}C_{1}{}^{7}C_{1}{}^{7}C_{2}{}^{7}C_{2}$$

Explain why this expression is correct.

Question 8 (9 marks) Use a SEPARATE writing booklet

Marks

- (a) On 1st January 2013 James commenced a savings account where he deposited \$1200 per month and earned 6% p.a. compounded monthly. His aim was to have \$100 000 saved by the end of 2020.
 - (i) Show that by 1st April 2018 James will have \$89 047.24

2

(ii) James realizes he no longer needs to deposit \$1200 to achieve his goal. What is the minimum amount that James must continue to deposit into his savings in order to achieve his goal by the end of 2020?

2

(b) Mrs Hackett wanted to measure the height (h) of a tower. Using her new ultra sonic distance measurer given to her by her brother for her birthday, she measured the angle of elevation to the tower from two different points.

At a point A due south of the tower, the angle of elevation to T, is 25° . She then walked 100 m to point B, on a bearing of 130° from the tower, where the angle of elevation is 30°.

(i) Copy or trace the diagram into your writing booklet showing all information on your diagram.

1

(ii) Show that $OA = h \tan 65^{\circ}$

(iii) Show that
$$h^2 = \frac{10000}{\tan^2 65^\circ + \tan^2 60^\circ - 2\cos 50^\circ \tan 65^\circ \tan 60^\circ}$$

Question 9 (9 marks) Use a SEPARATE writing booklet

Marks

- (a) Show that the polynomial $P(x) = x^4 2x^3 + 7x 6$ is divisible by (x-1).
- (b) A root of the equation $e^x x^2 = 0$ lies near x = -0.5. Taking x = -0.5 as a first approximation to the root, use Newton's Method to obtain a second approximation, correct to two decimal places.
- (c) The equation of the chord PQ of the parabola $x^2 = 4y$, where P is the point $(2p, p^2)$ and Q the point $(2q, q^2)$ is $y = \frac{(p+q)}{2}x pq$. (YOU DO NOT NEED TO SHOW THIS)
 - (i) Find the co-ordinates of the midpoint M of PQ.
 - (ii) If the chord passes through the point (0, 2), find the locus of M.
- (d) (i) Find $\frac{d(xe^{2x})}{dx}$
 - (ii) Hence, evaluate $\int_{0}^{1} 2xe^{2x} dx$

(a) Find the area between the curve

2

$$y = \sqrt{x+1}$$
, and the x – axis between $x = -1$ and $x = 3$

(b) The area between the semicircle

 $y = \sqrt{9 - x^2}$ and the x - axis is to be approximated using Simpson's rule with the 5 intervals determined by: x = -3, x = -1.5, x = 0, x = 1.5 and x = 3.

- (i) Find the approximate area using the five intervals to 3 significant figures. 2
- Using the approximate area determine an approximate value of π 1 (ii)
- (iii) What is the percentage error in this value of π (to 1 decimal place) 1

(c)

The area between the curves $y = 2x^2$ and $y = 6 - x^2$ is rotated about the y-axis

Find the x values of the points of intersection of the two curves (i)

1

Find the volume of the solid of revolution. (ii)

2

End of Examination

HURLSTONE AGRICULTURAL HIGH SCHOOL

MATHEMATICS EXTENSION 1 2013 HSC

Assessment Task 2

Marking Scheme:

Extension 1 Task 2 HSC 2013 Multiple Choice Answers

Question 1:	В
Question 2:	С
Question 3:	A
Question 4:	С
Ouestion 5:	A

Question N		cs Extension 1 Half Yearly Examination 201 Solutions and Marking Gui	
Z		Outcomes Addressed in this Q	
HE2 uses	inductive	reasoning in the construction of proofs	
para	ımetric rep	ns involving permutations and combinations, inequali resentations hensive use of mathematical language, diagrams and :	-
	ations	Solutions Solutions	Marking Guidelines
Julcome	(0)	Solutions	Wai King Guidenites
HE2	(a)	1. Prove true for $n = 1$ L.H.S = $\sum_{r=1}^{1} r r!$ R.H.S = $(1+1)!-1$	 3 marks Correct solution showing full reasoning. 2 marks Substantial progress towards full solution including proof for n = 1.
		= 1.1! = 1 = 1 = L.H.S \therefore True for $n = 1$ 2. Assume true for $n = k$.	1 mark Proves result is true for $n = 1$.
		ie. Assume $\sum_{r=1}^{k} r r! = (k+1)! - 1$ Prove true for $n = k+1$	
		ie. Prove $\sum_{r=1}^{k+1} rr! = (k+2)! - 1$ L.H.S = $\sum_{r=1}^{k+1} rr!$	
		$= \sum_{r=1}^{k} r r! + (k+1)(k+1)!$	
		= (k+1)! - 1 + (k+1)(k+1)! $= (k+1)![1 + (k+1)] - 1$ $= (k+1)!(k+2) - 1$ $= (k+2)! - 1$	
		= R.H.S 3. Hence, by the priciple of mathematical induction, the result is true for all values of $n \ge 1$.	
	(b) (i)		
PE6		Point of intersection occurs when: $5-x^2 = (x-1)^2$ $= x^2 - 2x + 1$	1 mark Correct solution giving point in first quadrant.
	10000	$0 = 2x^{2} - 2x - 4$ $= x^{2} - x - 2$ $= (x+1)(x-2)$ $\therefore \text{ Point in first quadrant: (2,1)}$	
	(ii)		
PE6		$y = 5 - x^{2}$ $y = (x - 1)^{2}$ $\frac{dy}{dx} = -2x$ $\frac{dy}{dx} = 2x - 2$ Gradients of curves when $x = 2$ $m_{1} = -2 \times 2$ $= -4$ $m_{2} = 2 \times 2 - 2$ $= 2$	2 marks Correct solution. 1 mark Substantial progress towards correct solution including gradients of both curve
		Acute angle (θ) between curves when $x = 2$ $\tan \theta = \frac{m_1 - m_2}{1 + m_1 m_2}$ $= \frac{-4 - 2}{1 + (-4 \times 2)}$	
		$= \frac{1 + (-4 \times 2)}{1 + (-4 \times 2)}$ $= \frac{-6}{-7}$ $\therefore \theta = \tan^{-3} \left(\frac{6}{7}\right)$	
		= 41° (to nearest degree)	

,

¥

PE3

(c) (i)

$$\frac{x^2 - 5x}{x - 4} \le 3$$

Multiplying both sides of the inequality by $(x-4)^2$

$$(x^2 - 5x)(x-4) \le 3(x-4)$$

$$(x^2-5x)(x-4)-3(x-4) \le 0$$

$$(x-4)[(x^2-5x)-3(x-4)] \le 0$$

$$(x-4)[x^2-5x-3x+12] \le 0$$

$$(x-4)[x^2-8x+12] \le 0$$

$$(x-4)(x-6)(x-2) \le 0$$

Sketch of y = (x - 4)(x - 6)(x - 2)

From graph:

$$x \leq 2$$
 , $4 < x \leq 6$

(Note: $x \neq 4$)

3 marks

Correct solution.

2 marks

Substantial progress towards correct solution.

1 mark

Recognises that both sides of the inequality must be multiplied by a positive, **OR** that the inequality must be considered in cases. Either approach must include a correct start to the solution.

Year 12	Mathematics Extension 1	Half Yearly Examination 2013
Question 7		
70	Outcomes Addressed in this Questi	
	vides reasoning to support conclusions which are appropria s multi-step deductive reasoning in a variety of contexts	ate to the context
	ves problems involving permutations and combinations, inc	equalities polynomials circle
	metry and parametric representations	squanties, polynomiais, energ
Part	Solutions	Marking Guidelines
(a)	$LHS = \frac{1 + \cos 2\theta}{\sin 2\theta}$	Award 2 ~ Correct solution.
P3,PE2	$LHS = {\sin 2\theta}$	
	$=\frac{1+2\cos^2\theta-1}{2}$	Award 1 ~ Substantial progress
	$=\frac{1+2\cos\theta}{2\sin\theta\cos\theta}$	towards solution
	1	
	$=\frac{2\cos^2\theta}{2\sin^2\theta}$	
	$2\sin\theta\cos\theta$	
	$=\frac{\cos\theta}{}$	
	$\sin \theta$	
	$=\cot\theta$	
	= RHS	
(b)	Number of towers = $5 \times 4 \times 3 = 60$	America 1 Comment relation
(i) PE3	Number of towers = $3 \times 4 \times 3 = 60$	Award 1 ~ Correct solution
(ii) PE3	Number of towers	Award 2 ~ Correct solution.
()	2 textbooks high = $5 \times 4 = 20$	
	3 textbooks high = $5 \times 4 \times 3 = 60$	Award 1 ~ Substantial progress
	4 textbooks high = $5 \times 4 \times 3 \times 2 = 120$	towards solution
	5 textbooks high = $5 \times 4 \times 3 \times 2 \times 1 = 120$	· ·
	\therefore Number of towers that can be made = 320	
(c)		
(i) PE3	Place the two brothers, then choose 3 from 19	Award 2 ~ Correct solution.
	Number of ways = ${}^{1}C_{1} \times {}^{1}C_{1} \times {}^{19}C_{3}$	Award 1 ~ Substantial progress
	Number of unrestricted ways = ${}^{21}C_5$	towards solution
	_	
	$\therefore \text{ Probability} = \frac{{}^{1}C_{1} \times {}^{1}C_{1} \times {}^{19}C_{3}}{{}^{21}C_{5}} = \frac{1}{21}$	
	-C ₅ 21	
(ii) PE3	There are two patterns: $1, 1, 3$ or $1, 2, 2$	Award 2 ~ Correct solution.
	1 1 2	
	1, 1, 3 one player from each of two teams and three from the	Award 1 ~ Substantial progress
	other ${}^{7}C_{1} \times {}^{7}C_{1} \times {}^{7}C_{3}$	towards solution
	But the team with three player can be selected in ${}^{3}C_{1}$	
	ways	
	\therefore Number of ways = ${}^{3}C_{1} \times {}^{7}C_{1} \times {}^{7}C_{1} \times {}^{7}C_{3}$	

ear 12 Ta		Examination 2013
uestion N	No. 8 Solutions and Marking Guidelines Outcomes Addressed in this Question	
I5 - applie	es appropriate techniques from the study of calculus, geometry, prob	ahility <i>trigonometry</i> and
	olve problems	adiity, ii igonomony ama
Outcome	Solutions	Marking Guidelines
	a) *Similar to a superannuation question	
H5	(i)	
	P = \$1200, r = 0.005, n = 63	(2 marks)
	$A_n = P(1+r)^n$	correct solution
	$A_1 = 1200(1.005)^{63}$	(1 mark) substantial progress
	$A_2 = 1200(1.005)^{62}$	towards correct solution
	$A_3 = 1200(1.005)^{61}$	
	$A_3 = 1200(1.003)$	
	$A_{63} = 1200(1.005)$	- Western Control of the Control of
	By 1st April 2018 James will have: $A_1 + A_2 + A_3 + + A_{63}$	
	$=1200(1.005+1.005^2+1.005^3++1.005^{63})$	
	G.P. with $\alpha = 1.005$, $r = 1.005$, $n = 63$	
	$S_n = \frac{a(r^n - 1)}{r - 1}$	
	$=1200\left(\frac{1.005(1.005^{63}-1)}{1.005-1}\right)$	
	1.005-1	
	=\$89047.24	
	ii)	
	From 1 April 2018 to end of 2020, $n = 33$	(2 manta)
	$89047.24 \times 1.005^{33} = \104978.53	(2 marks) correct solution
	Therefore, without making any further deposits, James would	(1 mark)
	earn enough interest on the amount he has already saved, to take	substantial progress
	his total savings over \$100 000 by the end of 2020.	towards correct solution
	Or	
	Still required to save = \$100000 - \$89047.24	**This solution is not
	= \$10952.76 (by the end of 2020)	entirely correct as it
	$A_1 = R(1.005)^{33}$	does not consider the
		interest earned on the
	$A_2 = R(1.005)^{32}$	\$89 047.24 that has
	$A_3 = R(1.005)^{31}$	already been saved.
	$A_{33} = R(1.005)$	
	$10952.76 = A_1 + A_2 + A_3 + \dots + A_{33}$	
	$10952.76 = R(1.005 + 1.005^{2} + 1.005^{3} + + 1.005^{33})$	
	G.P. with a=1.005, r=1.005, n=33	
	$S_n = \frac{a(r^n - 1)}{r - 1}$	
	$\left(1.0050.76 \text{ p}\left(1.005(1.005^{33}-1)\right)\right)$	
	$10952.76 = R\left(\frac{1.005(1.005^{33} - 1)}{1.005 - 1}\right)$	
	R = \$304.58	
	Λ — ψυ ΟΨτ.υ ο	

: James needs to deposit at least \$304.58 to achieve his

goal by the end of 2020.

b)

(i)

(ii)

In
$$\Delta TOA$$
, $\tan 25^\circ = \frac{h}{OA}$

$$OA = \frac{h}{\tan 25^{\circ}}$$

 $\therefore OA = h \tan 65^{\circ}$

(iii)

Similarly to (ii),

In ΔTOB , $OB = h \tan 60^{\circ}$

By the cosine rule: $c^2 = a^2 + b^2 - 2ab \cos C$

$$100^2 = (h \tan 65^\circ)^2 + (h \tan 60^\circ)^2 - 2(h \tan 65^\circ)(h \tan 60^\circ)\cos 50^\circ$$

$$10000 = h^2 \tan^2 65^\circ + h^2 \tan^2 60^\circ - 2h^2 \tan 65^\circ \tan 60^\circ \cos 50^\circ$$

$$10000 = h^2 \left(\tan^2 65^\circ + \tan^2 60^\circ - 2 \tan 65^\circ \tan 60^\circ \cos 50^\circ \right)$$

$$\frac{10000}{\left(\tan^2 65^\circ + \tan^2 60^\circ - 2\tan 65^\circ \tan 60^\circ \cos 50^\circ\right)} = h^2$$

$$\therefore h^2 = \frac{10000}{\left(\tan^2 65^\circ + \tan^2 60^\circ - 2\cos 50^\circ \tan 65^\circ \tan 60^\circ\right)}$$

(1 mark)

Diagram showing all information.

(1 mark)

Correct solution

(3 marks)

correct solution

(2 marks)

substantial progress towards correct solution

(1 mark)

Some progress towards correct solution

PE5 de ru H5 ap	No.9 Solutions and Marking Guidelines Outcomes Addressed in this Question Ives problems involving polynomials and parametric representations. termines derivatives which require the application of more than one le of differentiation. plies appropriate techniques from the study of calculus to solve oblems Solutions a) $P(x) = x^4 - 2x^3 + 7x - 6$	Marking Guidelines 1 mark: correct
PE5 de ru H5 ap pr Outcome	lves problems involving polynomials and parametric representations. termines derivatives which require the application of more than one le of differentiation. plies appropriate techniques from the study of calculus to solve oblems Solutions	Guidelines
PE5 de ru H5 ap pr Outcome	termines derivatives which require the application of more than one le of differentiation. plies appropriate techniques from the study of calculus to solve oblems Solutions	Guidelines
H5 ap pr Outcome	plies appropriate techniques from the study of calculus to solve oblems Solutions	Guidelines
pr Outcome	Solutions Solutions	Guidelines
Outcome	Solutions	Guidelines
PE3	a) $P(x) = x^4 - 2x^3 + 7x - 6$	
PE3	a) $P(x) = x^4 - 2x^3 + 7x - 6$	I mark : correct
PE3	· ·	
	P(1)=1-2+7-6=0.	solution
	Since $P(1) = 0$, $P(x)$ is divisible by $x-1$	
	b) Let $f(x) = e^x - x^2$.	
1 5	$f(-0.5) = e^{-0.5} - (-0.5)^2 = e^{-0.5} - 0.25.$	2 marks: correct
	$f'(x) = e^x - 2x.$	solution 1 mark:
	$f'(-0.5) = e^{-0.5} - 2 \times -0.5 = e^{-0.5} + 1.$	significant
		progress towards
	A better approximation is given by $-0.5 - \frac{f(-0.5)}{f'(-0.5)}$	correct solution
	$= -0.5 - \frac{e^{-0.5} - 0.25}{e^{-0.5} + 1}$	
	$= -0.5 - \frac{1}{e^{-0.5} + 1}$	
	= -0.72	
PE3	c) (i) Midpoint $M = \left(\frac{2p+2q}{2}, \frac{p^2+q^2}{2}\right) = \left(p+q, \frac{p^2+q^2}{2}\right)$	1 mark : correct

(ii) (0, 2) lies on $y = \frac{(p+q)}{2}x - pq$.

Using $(p+q)^2 = p^2 + q^2 + 2pq$, $x^2 = 2y + 2 \times -2$

 \therefore locus of M is $x^2 = 2y - 4$.

 $\therefore 2 = 0 - pq$.

At M, $\begin{cases} x = p + q \\ y = \frac{p^2 + q^2}{2} \\ pq = -2 \end{cases}$

 $\therefore pq = -2.$

2 marks : correct

progress towards correct solution

solution 1 mark:

significant

PE5	d) (i) $\frac{d(xe^{2x})}{dx} = x.2e^{2x} + e^{2x}.1$	1 mark : correct answer
	$\therefore \frac{d(xe^{2x})}{dx} = 2xe^{2x} + e^{2x}$ (ii) Since $\frac{d(xe^{2x})}{dx} = 2xe^{2x} + e^{2x}$	
	Then $\int (2xe^{2x} + e^{2x})dx = xe^{2x} + c$ $\therefore \int 2xe^{2x}dx + \int e^{2x}dx = xe^{2x} + c$ $\int 2xe^{2x}dx + \frac{1}{2}e^{2x} = xe^{2x} + c$ $\therefore \int 2xe^{2x}dx = xe^{2x} - \frac{1}{2}e^{2x} + c$	2 marks : correct solution 1 mark : significant progress towards correct solution
	Hence,	

Year 12	Mathematics Half Yearly Exam	ination 2013
Question 12	Solutions and Marking Guidelines	
	Outcomes Addressed in this Question	
H8	uses techniques of integration to calculate areas and volumes	35 3
Outcomes	Working	Marks
Н8	Question 10: $(a) \int_{-1}^{3} y dx = \int_{-1}^{3} (1+x)^{\frac{1}{2}} dx$ $= \frac{2}{3} (1+x)^{\frac{3}{2}} \int_{-1}^{3} \int_{\frac{1}{3}}^{2} \int_{0}^{2} \int_{\frac{1}{3}}^{2} \int_{0}^{2} \int_{0}^{$	2 marks for complete solution. 1 mark for satisfactory working. Diagram not essential but useful.
Н8	(b) (i) Area = $\frac{3}{6} \{0 + 4 \times \sqrt{6 \cdot 75} + 2 \times 3 + 4 \times \sqrt{6 \cdot 75} + 0\}$ = $\frac{1}{2} \{8\sqrt{6.75} + 6\}$ = $13 \cdot 4U^2$ (to 3 significant figures) (ii) Area of semicircle = $\frac{\pi \times 3^2}{2}$ Hence $13 \cdot 4 \approx \frac{9\pi}{2}$ and $\pi \approx 2\frac{44}{45} \approx 2.98$ (2 significant figures) (iii) Error ≈ 0.164 (3 significant figures)	2 marks for full solution. 1 mark for correct formula
	Percentage error $\approx \frac{0.164}{\pi} \times 100$ $\approx 5.2\%$ Note: Using the full values (without rounding) approx error is 5.3%	1 mark
Н8	(c) (i) $2x^2 = 6 - x^2$ gives us $x = -\sqrt{2}$ and $x = \sqrt{2}$	l mark

Н8	(ii) We need to find the volume of revolution between $y = 6 - x^2$ and $y = 2x^2$ from $y = 0$ to $y = 4$ and between $y = 2x^2$ and $y = 6 - x^2$ from $y = 4$ to $y = 6$ i.e.	1 mark for substantial progress
Land Company of the C	$= \pi \left(\left[\{0y - \frac{1}{2} , 0\} - \{\frac{1}{4}, 0\} \right] + \left[\{\frac{1}{4}, 4\} - \{0y - \frac{1}{2}, 4\} \right] \right)$ $= \pi \left(\left[\{24 - 8\} - \{4 - 0\} \right] + \left[\{9 - 4\} - \{18 - 16\} \right] \right)$ $= 15\pi U^{3}$	2 marks for full solution.